China high quality Right Hand Power Steering Gear for CHINAMFG Land Cruiser Uzj100r (44200-60090/44250-60090/44250-40090) plastic cogs

Product Description

1. Certificate: ISO9-1
8-97943-521-1
8-97234439-3
53601-SDA-Q04
53601-SDA-A02
53601-SEA-E12
MB489405
MR333503
8-97943520-1
53601-TAO–0
8-98231299-0
8-98229842
53601-SWA-571
53601-SWA-A01
442-4
442-0
8-97944520-0
8-97234439-3
8-97944518-0

377422065C
169571682GG
94758907
46540678
46539571
46539571
7E1422061HX
7E1422061J

44250-33330
44250-5711
44250-33340

8D1422065J
8D1422052B
8D1422052X
8D1422069F
44250-06270
442-0
442-0
8-97946130-1
44250-5711
44250-04040
96535298
CA100159160
93238311
95238311
57700-4F000
57700-4H100
DM765519
57700-0Q000
57700-1Z000
57700-1M500
57700-2S100
57700-4Q000
57700-1F000
57700-2E000
7832866
7L8422062G
57700-2B210
57700-0W100
0K60A-32-110
57700-2D000
45510-52040
45510-0D180
45500-28080
45510-28160
45510-58571
45510-58030
4410A454
45510-BZ230
53400-T7A-H99
53400-T7A-J02
53400-T7S-T01
45500-57130
45510-BZ160
45510-BZ120
45510-02600
45510-12410
45510-57100
45510-57101
45510-42571
45510-42140
45510-42060
45510-BZ280
45510-12290
45510-47571
45510-47011
45510-47012
45510-68571
53400-T5A-J01
45510-47060
45510-47070
45510-0D500
45510-0D550
45510-0D460
45510-47571
48001-JG00B
 48001-JG00A
45510-BZ090
D652 32-110A
8V51-3200-B299
D653-32-110B
PW922623
53400-T5G-H0B
56500-1J950
45510-BZ330
45510-58060
45510-47080
45510-OD250
45510-52140
45510-57141/12391
45510-47040
45510-48040
45510-12450
45510-12390
45500-57130
45500-57100
45510-57142
53400-T7A-H01
53400-T7A-H02
45510-06041
45510-06061
45510-BZ130
45500-BZ120
45510-57180
48001-4EH0A
45510-0D430
45510-OD490
45510-OR030
45510-42030
45510-42100
45510-42160
45510-12280
45510-57150
45510-57170
53400-T5G-H01
53400-T5R-A02
45510-OE571
45510-48571
48001-ED51A
48001-ED500
49001-ED500
48001-3DN1A
48001-3SG1A
48001-3DN0A
48001-JD900
48001-JM00C
48001-4BA0A
48001-4BA0B
48001-1KA0D
48001-1KA0A
48001-1KA0B
DF7132110A
8V513200CE
DF7132110A
56500-4V000
56500-A7000
56500-2W100
56500-D3000
56500-D1500
56500-F2100-C
56500-F2100
56500-H8200
45510-57150
45510-47030
45510-47571
45510-48080
48001-3AW0A
48001-1HK0A
38001-1HB8A
48001-1HB9A
48001-9KE1B
48001-3AR0A
45510-57120
45510-47160
DA6A-32-110A
48001-3NA0B
45500-05030
45510- 0571 1
45510- 0571 1
45510-76571
6RU423057K
6RU423057M
56500-3X200
56500-3X000
56500-F9100
56500-H6000
56500-H8200
26270781
90921300
45510-0E060
45510-02690
6RD423057K
42519771
CN153A500AA
48001-3SG1A
56500-C1000/3000
56500-D4000
56500-3Q000
45510-02630/57190
GHT2-32-110
BJ832110
48001-5RB0B
48001-5RF0A
TK48-32-110A
10671656
4048.A4
48500-77500
45510-87702
45510-27030
45510-27050
45510-27571

Welcome to customized order!

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 12 Months
Warranty: 12 Months
Type: Steering Gears/Shaft
Material: Aluminum, Steel, Rubber, Plastic
Certification: ISO
Automatic: Power
Customization:
Available

|

What are the typical tolerances and quality standards for injection molded parts?

When it comes to injection molded parts, the tolerances and quality standards can vary depending on several factors, including the specific application, industry requirements, and the capabilities of the injection molding process. Here are some general considerations regarding tolerances and quality standards:

Tolerances:

The tolerances for injection molded parts typically refer to the allowable deviation from the intended design dimensions. These tolerances are influenced by various factors, including the part geometry, material properties, mold design, and process capabilities. It’s important to note that achieving tighter tolerances often requires more precise tooling, tighter process control, and additional post-processing steps. Here are some common types of tolerances found in injection molding:

1. Dimensional Tolerances:

Dimensional tolerances define the acceptable range of variation for linear dimensions, such as length, width, height, and diameter. The specific tolerances depend on the part’s critical dimensions and functional requirements. Typical dimensional tolerances for injection molded parts can range from +/- 0.05 mm to +/- 0.5 mm or even tighter, depending on the complexity of the part and the process capabilities.

2. Geometric Tolerances:

Geometric tolerances specify the allowable variation in shape, form, and orientation of features on the part. These tolerances are often expressed using symbols and control the relationships between various geometric elements. Common geometric tolerances include flatness, straightness, circularity, concentricity, perpendicularity, and angularity. The specific geometric tolerances depend on the part’s design requirements and the manufacturing capabilities.

3. Surface Finish Tolerances:

Surface finish tolerances define the acceptable variation in the texture, roughness, and appearance of the part’s surfaces. The surface finish requirements are typically specified using roughness parameters, such as Ra (arithmetical average roughness) or Rz (maximum height of the roughness profile). The specific surface finish tolerances depend on the part’s aesthetic requirements, functional needs, and the material being used.

Quality Standards:

In addition to tolerances, injection molded parts are subject to various quality standards that ensure their performance, reliability, and consistency. These standards may be industry-specific or based on international standards organizations. Here are some commonly referenced quality standards for injection molded parts:

1. ISO 9001:

The ISO 9001 standard is a widely recognized quality management system that establishes criteria for the overall quality control and management of an organization. Injection molding companies often seek ISO 9001 certification to demonstrate their commitment to quality and adherence to standardized processes for design, production, and customer satisfaction.

2. ISO 13485:

ISO 13485 is a specific quality management system standard for medical devices. Injection molded parts used in the medical industry must adhere to this standard to ensure they meet the stringent quality requirements for safety, efficacy, and regulatory compliance.

3. Automotive Industry Standards:

The automotive industry has its own set of quality standards, such as ISO/TS 16949 (now IATF 16949), which focuses on the quality management system for automotive suppliers. These standards encompass requirements for product design, development, production, installation, and servicing, ensuring the quality and reliability of injection molded parts used in automobiles.

4. Industry-Specific Standards:

Various industries may have specific quality standards or guidelines that pertain to injection molded parts. For example, the aerospace industry may reference standards like AS9100, while the electronics industry may adhere to standards such as IPC-A-610 for acceptability of electronic assemblies.

It’s important to note that the specific tolerances and quality standards for injection molded parts can vary significantly depending on the application and industry requirements. Design engineers and manufacturers work together to define the appropriate tolerances and quality standards based on the functional requirements, cost considerations, and the capabilities of the injection molding process.

How do innovations and advancements in injection molding technology influence part design and production?

Innovations and advancements in injection molding technology have a significant influence on part design and production. These advancements introduce new capabilities, enhance process efficiency, improve part quality, and expand the range of applications for injection molded parts. Here’s a detailed explanation of how innovations and advancements in injection molding technology influence part design and production:

Design Freedom:

Advancements in injection molding technology have expanded the design freedom for part designers. With the introduction of advanced software tools, such as computer-aided design (CAD) and simulation software, designers can create complex geometries, intricate features, and highly optimized designs. The use of 3D modeling and simulation allows for the identification and resolution of potential design issues before manufacturing. This design freedom enables the production of innovative and highly functional parts that were previously challenging or impossible to manufacture using conventional techniques.

Improved Precision and Accuracy:

Innovations in injection molding technology have led to improved precision and accuracy in part production. High-precision molds, advanced control systems, and closed-loop feedback mechanisms ensure precise control over the molding process variables, such as temperature, pressure, and cooling. This level of control results in parts with tight tolerances, consistent dimensions, and improved surface finishes. Enhanced precision and accuracy enable the production of parts that meet strict quality requirements, fit seamlessly with other components, and perform reliably in their intended applications.

Material Advancements:

The development of new materials and material combinations specifically formulated for injection molding has expanded the range of properties available to part designers. Innovations in materials include high-performance engineering thermoplastics, bio-based polymers, reinforced composites, and specialty materials with unique properties. These advancements allow for the production of parts with enhanced mechanical strength, improved chemical resistance, superior heat resistance, and customized performance characteristics. Material advancements in injection molding technology enable the creation of parts that can withstand demanding operating conditions and meet the specific requirements of various industries.

Process Efficiency:

Innovations in injection molding technology have introduced process optimizations that improve efficiency and productivity. Advanced automation, robotics, and real-time monitoring systems enable faster cycle times, reduced scrap rates, and increased production throughput. Additionally, innovations like multi-cavity molds, hot-runner systems, and micro-injection molding techniques improve material utilization and reduce production costs. Increased process efficiency allows for the economical production of high-quality parts in larger quantities, meeting the demands of industries that require high-volume production.

Overmolding and Multi-Material Molding:

Advancements in injection molding technology have enabled the integration of multiple materials or components into a single part through overmolding or multi-material molding processes. Overmolding allows for the encapsulation of inserts, such as metal components or electronics, with a thermoplastic material in a single molding cycle. This enables the creation of parts with improved functionality, enhanced aesthetics, and simplified assembly. Multi-material molding techniques, such as co-injection molding or sequential injection molding, enable the production of parts with multiple colors, varying material properties, or complex material combinations. These capabilities expand the design possibilities and allow for the creation of innovative parts with unique features and performance characteristics.

Additive Manufacturing Integration:

The integration of additive manufacturing, commonly known as 3D printing, with injection molding technology has opened up new possibilities for part design and production. Additive manufacturing can be used to create complex mold geometries, conformal cooling channels, or custom inserts, which enhance part quality, reduce cycle times, and improve part performance. By combining additive manufacturing and injection molding, designers can explore new design concepts, produce rapid prototypes, and efficiently manufacture customized or low-volume production runs.

Sustainability and Eco-Friendly Solutions:

Advancements in injection molding technology have also focused on sustainability and eco-friendly solutions. This includes the development of biodegradable and compostable materials, recycling technologies for post-consumer and post-industrial waste, and energy-efficient molding processes. These advancements enable the production of environmentally friendly parts that contribute to reducing the carbon footprint and meeting sustainability goals.

Overall, innovations and advancements in injection molding technology have revolutionized part design and production. They have expanded design possibilities, improved precision and accuracy, introduced new materials, enhanced process efficiency, enabled overmolding and multi-material molding, integrated additive manufacturing, and promoted sustainability. These advancements empower part designers and manufacturers to create highly functional, complex, and customized parts that meet the demands of various industries and contribute to overall process efficiency and sustainability.

Can you explain the advantages of using injection molding for producing parts?

Injection molding offers several advantages as a manufacturing process for producing parts. It is a widely used technique for creating plastic components with high precision, efficiency, and scalability. Here’s a detailed explanation of the advantages of using injection molding:

1. High Precision and Complexity:

Injection molding allows for the production of parts with high precision and intricate details. The molds used in injection molding are capable of creating complex shapes, fine features, and precise dimensions. This level of precision enables the manufacturing of parts with tight tolerances, ensuring consistent quality and fit.

2. Cost-Effective Mass Production:

Injection molding is a highly efficient process suitable for large-scale production. Once the initial setup, including mold design and fabrication, is completed, the manufacturing process can be automated. Injection molding machines can produce parts rapidly and continuously, resulting in fast and cost-effective production of identical parts. The ability to produce parts in high volumes helps reduce per-unit costs, making injection molding economically advantageous for mass production.

3. Material Versatility:

Injection molding supports a wide range of thermoplastic materials, providing versatility in material selection based on the desired properties of the final part. Various types of plastics can be used in injection molding, including commodity plastics, engineering plastics, and high-performance plastics. Different materials can be chosen to achieve specific characteristics such as strength, flexibility, heat resistance, chemical resistance, or transparency.

4. Strength and Durability:

Injection molded parts can exhibit excellent strength and durability. During the injection molding process, the molten material is uniformly distributed within the mold, resulting in consistent mechanical properties throughout the part. This uniformity enhances the structural integrity of the part, making it suitable for applications that require strength and longevity.

5. Minimal Post-Processing:

Injection molded parts often require minimal post-processing. The high precision and quality achieved during the molding process reduce the need for extensive additional machining or finishing operations. The parts typically come out of the mold with the desired shape, surface finish, and dimensional accuracy, reducing time and costs associated with post-processing activities.

6. Design Flexibility:

Injection molding offers significant design flexibility. The process can accommodate complex geometries, intricate details, undercuts, thin walls, and other design features that may be challenging or costly with other manufacturing methods. Designers have the freedom to create parts with unique shapes and functional requirements. Injection molding also allows for the integration of multiple components or features into a single part, reducing assembly requirements and potential points of failure.

7. Rapid Prototyping:

Injection molding is also used for rapid prototyping. By quickly producing functional prototypes using the same process and materials as the final production parts, designers and engineers can evaluate the part’s form, fit, and function early in the development cycle. Rapid prototyping with injection molding enables faster iterations, reduces development time, and helps identify and address design issues before committing to full-scale production.

8. Environmental Considerations:

Injection molding can have environmental advantages compared to other manufacturing processes. The process generates minimal waste as the excess material can be recycled and reused. Injection molded parts also tend to be lightweight, which can contribute to energy savings during transportation and reduce the overall environmental impact.

In summary, injection molding offers several advantages for producing parts. It provides high precision and complexity, cost-effective mass production, material versatility, strength and durability, minimal post-processing requirements, design flexibility, rapid prototyping capabilities, and environmental considerations. These advantages make injection molding a highly desirable manufacturing process for a wide range of industries, enabling the production of high-quality plastic parts efficiently and economically.

China high quality Right Hand Power Steering Gear for CHINAMFG Land Cruiser Uzj100r (44200-60090/44250-60090/44250-40090)  plastic cogsChina high quality Right Hand Power Steering Gear for CHINAMFG Land Cruiser Uzj100r (44200-60090/44250-60090/44250-40090)  plastic cogs
editor by Dream 2024-05-16